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We report on a work in progress that aims at defining an effective static analyser for OCaml programs, by

leveraging abstract interpretation techniques. The goal of the Salto static analyser is to detect precisely which

exceptions an OCaml program might raise, and to report problematic cases, where a program execution might

rely on elements of the OCaml semantics that are deemed under-specified or undefined. The Salto analyser
exploits a novel abstract domain to represent inductively defined sets of trees, that draws inspiration from the

theory of recursive types, from tree automata, and from the abstract domain of Type Graphs. The analyser

itself is defined using a dynamic fixpoint solver, i.e., a generic library that implements an iteration strategy

that finds a post-fixpoint. The solver automatically inserts widening points to ensure the convergence of

the iteration process, and aims at limiting the unnecessary computations that may be asked by the iteration

strategy.
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1 WELL TYPED PROGRAMS CANNOT GOWRONG
As a member of the ML family, the OCaml programming language [Leroy, Doligez, et al. 2022]

benefits from the increased safety that is induced by strong typing [Milner 1978]: “well typed
programs cannot go wrong”. This means that values are always used in a consistent manner by well

typed programs, so that abrupt crashes, e.g., memory-related errors such as segmentation faults,

are ruled out by the type safety theorem.

TheML type system does not, however, protect against other kind of programming mistakes,

such as forgetting to catch some exceptions. Extensions of ML based on type and effect systems

have been developed [Leroy and Pessaux 2000] to detect such programming mistakes.

Uncaught exception in OCaml programs may occur for a variety of reasons, such as:

• Explicit raises of exceptions,

• Non-exhaustive pattern matching,

• Out of bound array accesses (and similarly for strings and packed byte arrays),

• Divisions by zero,

• Assertions explicitly written by a programmer,

• Initialisations of recursive modules,

• Polymorphic equality tests and comparisons that involve functions.

Other parts of the OCaml language have deliberately under-specified or unspecified behaviours,

and would benefit from early detection. This includes:

• Arithmetic overflows and underflows,

• Lazy patterns, whose evaluation may produce side effects,

• Conditions in patterns (when clauses), that may produce side effects,
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• Calls to unsafe functions (unchecked array accesses, unmarshalling, etc.).
In this talk, we present an early prototype of a static analyser for OCaml programs, that is based

on the theory of abstract interpretation. The Salto analyser1 is a whole program analyser that infers,

for each sub-expression of a program that might be reachable, which values it may reduce to, and

which exceptions its evaluation may raise.

The exceptions that result from memory or stack exhaustion, as well as the recently introduced

features of OCaml 5.0—e.g., parallelism, algebraic effects—are out of the scope of this project for

the moment.

2 A VALUE ANALYSIS FOR HIGHER-ORDER PROGRAMS
It is common knowledge that the control flow of higher-order programs cannot always be statically

known, and that it makes the static analysis of such programs difficult. The dynamic nature of the

control-flow graph is even exacerbated by the fact that exceptions are first-class values in OCaml
(they can, for instance, be stored in data structures, or be passed as arguments to functions).

Many earlier work have been devoted to control flow analysis (CFA) [Jones 1981; Shivers 1991;

Wright and Jagannathan 1998] for the λ-calculus. The Salto analyser is based on recent work

[Montagu and Jensen 2021] that defines a CFA as a value analysis, by abstracting the control flow

traces that are produced by program executions. These control flow traces record which calls are

performed, and which results are returned, and keep track of the contexts in which such control

flow events are produced. For every reachable program point, the analyser infers an abstract value,

that denotes an inductively-defined set of values that may be produced by the sub-expression at

this program point.

The Salto analyser employs a novel abstract domain, whose salient feature is the presence of a

fixpoint constructor `𝛼.𝑎 to represent inductive sets of values. This idea is drawn from the theory of

equi-recursive types [Pierce 2002, Chapter 4], and can be understood as a term-based representation

of the Type Graphs that were used to analyse Prolog programs [P. Van Hentenryck et al. 1994;

Pascal Van Hentenryck et al. 1995].

Similarly to themethodology described in the “Abstracting Definitional Interpreters” article [Darais
et al. 2017], the Salto analyser is defined as a function in open recursive style—i.e., a functional of
type (𝜏1 → 𝜏2) → (𝜏1 → 𝜏2)—that is passed as argument to a dynamic fixpoint solver, and produces

a function of type 𝜏1 → 𝜏2 that computes on demand a solution of type 𝜏2 when it is provided with

an argument of type 𝜏1. The solver we have implemented is inspired by existing solvers from the

literature [Charlier and Van Hentenryck 1992; Schulze Frielinghaus et al. 2017; Seidl and Vogler

2018], that can handle abstract domains of unbounded heights, by automatically inserting calls to a

widening operator. Widening operators are an essential ingredient of abstract interpretation, that

are responsible for finding valuable generalisations of invariants, and ensure the convergence of

the iteration process. A similar approach based on dynamic fixpoint solvers has been chosen to

implement the Goblint static analyser for C programs [Vojdani et al. 2016].

3 CURRENT STATE OF THE IMPLEMENTATION AND FUTURE CHALLENGES
The prototype implementation of the Salto analyser currently supports the purely functional

subset of the OCaml core language only. This includes higher-order functions, recursion, algebraic
datatypes, and exceptions. The Salto prototype has not been released yet. So far, it is able to analyse

programs of the size of a few hundreds lines of code.

The analyser takes as input the typed abstract syntax tree (AST) of OCaml programs that is

produced by the typing phase of the compiler, and transforms it into a simplified AST, that has less

1
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constructs, so as to alleviate the implementation effort of the actual analysis. For example, a single
construct is responsible for pattern matching in this simplified AST.

The analysis is designed to handle untyped programs, and is so far independent from the typing

discipline enforced by the OCaml typechecker. This leaves open the future possibility of exploiting

type information during the analysis to infer more precise results, or to guide the creations or

merges of disjuncts in abstract values.

Our short- to mid-term goals is to expand the set of features supported by the analyser, such as:

• Mutable state,

• Laziness,

• Precise support for strings, floats, finite sets and maps,

• Modules, functors, and first-class modules.

On the longer term, we would also like to support:

• Infinite (coinductive) data-structures,

• Recursive modules and their initialisations,

• Objects and classes,

• System-related features, such as primitives for file-system operations, process management,

and signals (System and Unix modules),

• OCaml 5.0 specific features, e.g., algebraic effects, parallelism,

• Features related to the implementation of the OCaml runtime, e.g., that depend on how data

are represented in memory, or that are related to the garbage collector.

On a broader scope, we are also interested in exploring the following research questions:

• Can we detect when the behaviour of a program is sensitive to the order of evaluation of

function arguments, of tuple members, etc.?
• Can we detect when the behaviour of a program is sensitive to the initialisation order of its

compilation units?

• Can more modular analyses be developed for OCaml programs, that would produce precise

function summaries, such as relational analyses [Andreescu et al. 2019; Montagu and Jensen

2020] that infer relations between inputs and outputs of programs?
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