
The Design and Implementation of
An Abstract Interpreter for OCaml Programs
A Preliminary Report on the Salto Analyser

Benoît Montagu, Inria

ML workshop, Seattle — 2023, September 8th

1/16

https://people.irisa.fr/Benoit.Montagu/

The Salto Project

▶ What: static analysis for OCaml programs
https://salto.gitlabpages.inria.fr/

▶ Where: Inria Rennes

▶ Who:

P. Lermusiaux T. Genet T. Jensen B. Montagu

▶ Funding: + Nomadic Labs

2/16

https://salto.gitlabpages.inria.fr/
https://team.inria.fr/epicure/
https://fr.linkedin.com/in/pierre-lermusiaux-4220ba89
https://people.irisa.fr/Thomas.Genet/
https://people.rennes.inria.fr/Thomas.Jensen/
https://people.irisa.fr/Benoit.Montagu/

2/16

Static Analysis of OCaml programs: What For?

Short-term goals:
▶ Detect uncaught exceptions

▶ User-provided assertions
▶ Missing exception handlers (e.g., Division_by_zero)
▶ Out of bounds accesses for arrays, strings, …
▶ Polymorphic comparison on functions

▶ Detect illegal uses of unsafe functions (e.g., String.unsafe_get)

This talk

Longer-term goals:

▶ Support most of the OCaml language
▶ Detect unhandled algebraic effects
▶ Detect some undefined behaviours (e.g., sensitivity to evaluation order)

Out of scope (for now):

▶ Concurrency, parallelism
▶ Support for the Obj module

3/16

Static Analysis of OCaml programs: What For?

Short-term goals:
▶ Detect uncaught exceptions

▶ User-provided assertions
▶ Missing exception handlers (e.g., Division_by_zero)
▶ Out of bounds accesses for arrays, strings, …
▶ Polymorphic comparison on functions

▶ Detect illegal uses of unsafe functions (e.g., String.unsafe_get)

This talk

Longer-term goals:

▶ Support most of the OCaml language
▶ Detect unhandled algebraic effects
▶ Detect some undefined behaviours (e.g., sensitivity to evaluation order)

Out of scope (for now):

▶ Concurrency, parallelism
▶ Support for the Obj module

3/16

Static Analysis of OCaml programs: What For?

Short-term goals:
▶ Detect uncaught exceptions

▶ User-provided assertions
▶ Missing exception handlers (e.g., Division_by_zero)
▶ Out of bounds accesses for arrays, strings, …
▶ Polymorphic comparison on functions

▶ Detect illegal uses of unsafe functions (e.g., String.unsafe_get)

This talk

Longer-term goals:

▶ Support most of the OCaml language
▶ Detect unhandled algebraic effects
▶ Detect some undefined behaviours (e.g., sensitivity to evaluation order)

Out of scope (for now):

▶ Concurrency, parallelism
▶ Support for the Obj module 3/16

Static Analysis of OCaml programs: What For?

Short-term goals:
▶ Detect uncaught exceptions

▶ User-provided assertions
▶ Missing exception handlers (e.g., Division_by_zero)
▶ Out of bounds accesses for arrays, strings, …
▶ Polymorphic comparison on functions

▶ Detect illegal uses of unsafe functions (e.g., String.unsafe_get)

This talk

Longer-term goals:

▶ Support most of the OCaml language
▶ Detect unhandled algebraic effects
▶ Detect some undefined behaviours (e.g., sensitivity to evaluation order)

Out of scope (for now):

▶ Concurrency, parallelism
▶ Support for the Obj module 3/16

Static Analyses for Uncaught Exceptions

Two families of static analyses:
▶ Type and effect systems:

 Modular, good performance
 Limited precision for user-provided assertions

Xavier Leroy and François Pessaux. “Type-Based Analysis of Uncaught Excep-
tions”. In: ACM Trans. Program. Lang. Syst. 22.2 (2000), pp. 340–377. DOI: 10.1145/
349214.349230

▶ Extensions of control-flow analyses (CFA):
 Not modular, more costly
 Decent precision for user-provided assertions

Kwangkeun Yi. “Compile-time Detection of Uncaught Exceptions in Standard
ML Programs”. In: Static Analysis, First International Static Analysis Symposium,
SAS’94, Namur, Belgium, September 28-30, 1994, Proceedings. Ed. by Baudouin Le
Charlier. Vol. 864. Lecture Notes in Computer Science. Springer, 1994, pp. 238–254.
DOI: 10.1007/3-540-58485-4_44

4/16

https://doi.org/10.1145/349214.349230
https://doi.org/10.1145/349214.349230
https://doi.org/10.1007/3-540-58485-4_44

Static Analyses for Uncaught Exceptions

Two families of static analyses:
▶ Type and effect systems:

 Modular, good performance
 Limited precision for user-provided assertions

Xavier Leroy and François Pessaux. “Type-Based Analysis of Uncaught Excep-
tions”. In: ACM Trans. Program. Lang. Syst. 22.2 (2000), pp. 340–377. DOI: 10.1145/
349214.349230

▶ Extensions of control-flow analyses (CFA):
 Not modular, more costly
 Decent precision for user-provided assertions

Kwangkeun Yi. “Compile-time Detection of Uncaught Exceptions in Standard
ML Programs”. In: Static Analysis, First International Static Analysis Symposium,
SAS’94, Namur, Belgium, September 28-30, 1994, Proceedings. Ed. by Baudouin Le
Charlier. Vol. 864. Lecture Notes in Computer Science. Springer, 1994, pp. 238–254.
DOI: 10.1007/3-540-58485-4_44

4/16

https://doi.org/10.1145/349214.349230
https://doi.org/10.1145/349214.349230
https://doi.org/10.1007/3-540-58485-4_44

A Whole-Program Value Analysis for OCaml programs

▶ Principle:
For every reachable sub-expression 𝑒 of a program, compute:

▶ A superset of the values that 𝑒 may evaluate to, and
▶ A superset of the exceptions 𝑒 might raise
▶ An approximation of the call stack where the exception was raised

Expressions that are known to be unreachable are not analysed
 Only the functions that are called are analysed

▶ Technique: based on the abstract interpretation of λ-calculus developed in
Benoıt̂ Montagu and Thomas P. Jensen. “Trace-Based Control-Flow Analysis”. In:

PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, Virtual Event, Canada, June 20-25, 2021. Ed. by Stephen
N. Freund and Eran Yahav. ACM, 2021, pp. 482–496. DOI: 10.1145/3453483.3454057

We analyse programs as if they were untyped
▶ Novelty: an abstract domain to represent recursively defined sets of values
▶ Implementation: uses a dynamic fixpoint solver

5/16

https://doi.org/10.1145/3453483.3454057

A Whole-Program Value Analysis for OCaml programs

▶ Principle:
For every reachable sub-expression 𝑒 of a program, compute:

▶ A superset of the values that 𝑒 may evaluate to, and
▶ A superset of the exceptions 𝑒 might raise
▶ An approximation of the call stack where the exception was raised

Expressions that are known to be unreachable are not analysed
 Only the functions that are called are analysed

▶ Technique: based on the abstract interpretation of λ-calculus developed in
Benoıt̂ Montagu and Thomas P. Jensen. “Trace-Based Control-Flow Analysis”. In:

PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, Virtual Event, Canada, June 20-25, 2021. Ed. by Stephen
N. Freund and Eran Yahav. ACM, 2021, pp. 482–496. DOI: 10.1145/3453483.3454057

We analyse programs as if they were untyped

▶ Novelty: an abstract domain to represent recursively defined sets of values
▶ Implementation: uses a dynamic fixpoint solver

5/16

https://doi.org/10.1145/3453483.3454057

A Whole-Program Value Analysis for OCaml programs

▶ Principle:
For every reachable sub-expression 𝑒 of a program, compute:

▶ A superset of the values that 𝑒 may evaluate to, and
▶ A superset of the exceptions 𝑒 might raise
▶ An approximation of the call stack where the exception was raised

Expressions that are known to be unreachable are not analysed
 Only the functions that are called are analysed

▶ Technique: based on the abstract interpretation of λ-calculus developed in
Benoıt̂ Montagu and Thomas P. Jensen. “Trace-Based Control-Flow Analysis”. In:

PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, Virtual Event, Canada, June 20-25, 2021. Ed. by Stephen
N. Freund and Eran Yahav. ACM, 2021, pp. 482–496. DOI: 10.1145/3453483.3454057

We analyse programs as if they were untyped
▶ Novelty: an abstract domain to represent recursively defined sets of values

▶ Implementation: uses a dynamic fixpoint solver

5/16

https://doi.org/10.1145/3453483.3454057

A Whole-Program Value Analysis for OCaml programs

▶ Principle:
For every reachable sub-expression 𝑒 of a program, compute:

▶ A superset of the values that 𝑒 may evaluate to, and
▶ A superset of the exceptions 𝑒 might raise
▶ An approximation of the call stack where the exception was raised

Expressions that are known to be unreachable are not analysed
 Only the functions that are called are analysed

▶ Technique: based on the abstract interpretation of λ-calculus developed in
Benoıt̂ Montagu and Thomas P. Jensen. “Trace-Based Control-Flow Analysis”. In:

PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, Virtual Event, Canada, June 20-25, 2021. Ed. by Stephen
N. Freund and Eran Yahav. ACM, 2021, pp. 482–496. DOI: 10.1145/3453483.3454057

We analyse programs as if they were untyped
▶ Novelty: an abstract domain to represent recursively defined sets of values
▶ Implementation: uses a dynamic fixpoint solver 5/16

https://doi.org/10.1145/3453483.3454057

What We Have Achieved So Far

▶ An abstract interpreter (big-step style) that supports:
 Higher-order programs
 Mutually-recursive functions
 Algebraic values, deep pattern matching
 Integers, strings, characters…
 Exceptions
 Modules and functors (first class, non-recursive)
 No mutable state yet
 No laziness
 No objects/classes
 No OCaml 5 features

▶ The analyser is parameterised over the abstract domain for values

▶ A forward analysis: it is not guided by user-written formulas
▶ The analysis is context- and flow-sensitive
▶ A non-relational analysis: no relations between values/variables are inferred
▶ Demo! list_filter map_merge mc91 insert_sorted_list

6/16

What We Have Achieved So Far

▶ An abstract interpreter (big-step style) that supports:
 Higher-order programs
 Mutually-recursive functions
 Algebraic values, deep pattern matching
 Integers, strings, characters…
 Exceptions
 Modules and functors (first class, non-recursive)
 No mutable state yet
 No laziness
 No objects/classes
 No OCaml 5 features

▶ The analyser is parameterised over the abstract domain for values
▶ A forward analysis: it is not guided by user-written formulas
▶ The analysis is context- and flow-sensitive
▶ A non-relational analysis: no relations between values/variables are inferred

▶ Demo! list_filter map_merge mc91 insert_sorted_list

6/16

What We Have Achieved So Far

▶ An abstract interpreter (big-step style) that supports:
 Higher-order programs
 Mutually-recursive functions
 Algebraic values, deep pattern matching
 Integers, strings, characters…
 Exceptions
 Modules and functors (first class, non-recursive)
 No mutable state yet
 No laziness
 No objects/classes
 No OCaml 5 features

▶ The analyser is parameterised over the abstract domain for values
▶ A forward analysis: it is not guided by user-written formulas
▶ The analysis is context- and flow-sensitive
▶ A non-relational analysis: no relations between values/variables are inferred
▶ Demo! list_filter map_merge mc91 insert_sorted_list

6/16

An Abstract Domain For Sets Of Values (simplified)

A finite representation for recursively defined sets of untyped values:
𝑣♯ ∈ 𝕍♯ = { ints = 𝑑 ∈ ℤ♯;

variants = {c1 ↦ 𝑣♯; … ; c𝑛 ↦ 𝑣♯};
pairs = (𝑣♯, 𝑣♯);
funs = {(𝜆ℓx. 𝑡) ↦ [x1 ↦ 𝑣♯; … ; x𝑛 ↦ 𝑣♯]; … } }

∣ ⊤

∣ 𝛼 ∣ 𝜇𝛼. 𝑣♯

▶ 𝜇 has the semantics of a least fixed point
 The widening operator detects some regularity and introduces the 𝜇s
▶ Example: Peano numbers

𝜇𝛼.{variants = {O ↦ ⋅; S ↦ 𝛼}}
▶ Example: A set of continuations (for CPSed factorial)

𝜇𝛼.
⎧{
⎨{⎩
funs =

⎧{
⎨{⎩

(𝜆ℓ1x. x) ↦ [];
(𝜆ℓ2x. k (x ∗ n)) ↦ [n ↦ {ints = [1, +∞]}; k ↦ 𝛼];

⎫}
⎬}⎭

⎫}
⎬}⎭

7/16

An Abstract Domain For Sets Of Values (simplified)

A finite representation for recursively defined sets of untyped values:
𝑣♯ ∈ 𝕍♯ = { ints = 𝑑 ∈ ℤ♯;

variants = {c1 ↦ 𝑣♯; … ; c𝑛 ↦ 𝑣♯};
pairs = (𝑣♯, 𝑣♯);
funs = {(𝜆ℓx. 𝑡) ↦ [x1 ↦ 𝑣♯; … ; x𝑛 ↦ 𝑣♯]; … } }

∣ ⊤
∣ 𝛼 ∣ 𝜇𝛼. 𝑣♯

▶ 𝜇 has the semantics of a least fixed point
 The widening operator detects some regularity and introduces the 𝜇s

▶ Example: Peano numbers

𝜇𝛼.{variants = {O ↦ ⋅; S ↦ 𝛼}}
▶ Example: A set of continuations (for CPSed factorial)

𝜇𝛼.
⎧{
⎨{⎩
funs =

⎧{
⎨{⎩

(𝜆ℓ1x. x) ↦ [];
(𝜆ℓ2x. k (x ∗ n)) ↦ [n ↦ {ints = [1, +∞]}; k ↦ 𝛼];

⎫}
⎬}⎭

⎫}
⎬}⎭

7/16

An Abstract Domain For Sets Of Values (simplified)

A finite representation for recursively defined sets of untyped values:
𝑣♯ ∈ 𝕍♯ = { ints = 𝑑 ∈ ℤ♯;

variants = {c1 ↦ 𝑣♯; … ; c𝑛 ↦ 𝑣♯};
pairs = (𝑣♯, 𝑣♯);
funs = {(𝜆ℓx. 𝑡) ↦ [x1 ↦ 𝑣♯; … ; x𝑛 ↦ 𝑣♯]; … } }

∣ ⊤
∣ 𝛼 ∣ 𝜇𝛼. 𝑣♯

▶ 𝜇 has the semantics of a least fixed point
 The widening operator detects some regularity and introduces the 𝜇s
▶ Example: Peano numbers

𝜇𝛼.{variants = {O ↦ ⋅; S ↦ 𝛼}}

▶ Example: A set of continuations (for CPSed factorial)

𝜇𝛼.
⎧{
⎨{⎩
funs =

⎧{
⎨{⎩

(𝜆ℓ1x. x) ↦ [];
(𝜆ℓ2x. k (x ∗ n)) ↦ [n ↦ {ints = [1, +∞]}; k ↦ 𝛼];

⎫}
⎬}⎭

⎫}
⎬}⎭

7/16

An Abstract Domain For Sets Of Values (simplified)

A finite representation for recursively defined sets of untyped values:
𝑣♯ ∈ 𝕍♯ = { ints = 𝑑 ∈ ℤ♯;

variants = {c1 ↦ 𝑣♯; … ; c𝑛 ↦ 𝑣♯};
pairs = (𝑣♯, 𝑣♯);
funs = {(𝜆ℓx. 𝑡) ↦ [x1 ↦ 𝑣♯; … ; x𝑛 ↦ 𝑣♯]; … } }

∣ ⊤
∣ 𝛼 ∣ 𝜇𝛼. 𝑣♯

▶ 𝜇 has the semantics of a least fixed point
 The widening operator detects some regularity and introduces the 𝜇s
▶ Example: Peano numbers

𝜇𝛼.{variants = {O ↦ ⋅; S ↦ 𝛼}}
▶ Example: A set of continuations (for CPSed factorial)

𝜇𝛼.
⎧{
⎨{⎩
funs =

⎧{
⎨{⎩

(𝜆ℓ1x. x) ↦ [];
(𝜆ℓ2x. k (x ∗ n)) ↦ [n ↦ {ints = [1, +∞]}; k ↦ 𝛼];

⎫}
⎬}⎭

⎫}
⎬}⎭ 7/16

Abstract Domain: Important Remarks

The design of the abstract domain draws inspiration from:
▶ Equi-recursive types + union types
▶ Type Graphs (analysis of Prolog programs)
Pascal Van Hentenryck, Agostino Cortesi and Baudouin Le Charlier. “Type Ana-

lysis of Prolog Using Type Graphs”. In: The Journal of Logic Programming 22.3 (Mar.
1995), pp. 179–209. DOI: 10.1016/0743-1066(94)00021-w

▶ Tree grammars / Tree automata

These abstract values admit two representations:
▶ As graphs
 Efficient algorithms for union, intersection, inclusion, emptiness test,
widening, minimisation, …

▶ As terms, with bound variables
 Permits hash-consing/memoisation
 This is crucial to obtain decent performance (∼10× improvement!)

8/16

https://doi.org/10.1016/0743-1066(94)00021-w

Abstract Domain: Important Remarks

The design of the abstract domain draws inspiration from:
▶ Equi-recursive types + union types
▶ Type Graphs (analysis of Prolog programs)
Pascal Van Hentenryck, Agostino Cortesi and Baudouin Le Charlier. “Type Ana-

lysis of Prolog Using Type Graphs”. In: The Journal of Logic Programming 22.3 (Mar.
1995), pp. 179–209. DOI: 10.1016/0743-1066(94)00021-w

▶ Tree grammars / Tree automata

These abstract values admit two representations:
▶ As graphs
 Efficient algorithms for union, intersection, inclusion, emptiness test,
widening, minimisation, …

▶ As terms, with bound variables
 Permits hash-consing/memoisation
 This is crucial to obtain decent performance (∼10× improvement!) 8/16

https://doi.org/10.1016/0743-1066(94)00021-w

Related Work (1/2)

Pessaux & Leroy’s effect type system:

▶ They infer recursive types, using unification
▶ They support arrow types, row variables for effects: enables modular analysis
▶ They do not infer abstract closures:

Incurs a loss of information when using functions as first-class values
▶ Limited support for sets of integers: Int[1 ∶Pre; 3 ∶Pre] Int[⊤] Int[𝜌]

We support any abstract domain for integers (non-relational so far)

9/16

Related Work (2/2)

Control-Flow Analyses:

▶ They always avoid recursion in the abstract domain
▶ Recursion is obtained by means of indirections through an abstract heap

⎧{
⎨{⎩
funs =

⎧{
⎨{⎩

(𝜆ℓ1x. x) ↦ [];
(𝜆ℓ2x. k (x ∗ n)) ↦ [n ↦ 𝑝n; k ↦ 𝑝k];

⎫}
⎬}⎭

⎫}
⎬}⎭

where: ℎ̂(𝑝n) = {ints = [1, +∞]}

ℎ̂(𝑝k) =
⎧{
⎨{⎩

(𝜆ℓ1x. x) ↦ [];
(𝜆ℓ2x. k (x ∗ n)) ↦ [n ↦ 𝑝n; k ↦ 𝑝k];

⎫}
⎬}⎭

▶ Mimics the behaviour of a compiler: Values are allocated in the heap

▶ In practice: inhibits sharing of equivalent abstract values
▶ There is a finite number of abstract pointer names:

names are chosen based on a (finite) abstraction of the call stack
▶ The abstract heap is global:

This prevents refining information when some control-flow branch is taken

10/16

Related Work (2/2)

Control-Flow Analyses:

▶ They always avoid recursion in the abstract domain
▶ Recursion is obtained by means of indirections through an abstract heap

⎧{
⎨{⎩
funs =

⎧{
⎨{⎩

(𝜆ℓ1x. x) ↦ [];
(𝜆ℓ2x. k (x ∗ n)) ↦ [n ↦ 𝑝n; k ↦ 𝑝k];

⎫}
⎬}⎭

⎫}
⎬}⎭

where: ℎ̂(𝑝n) = {ints = [1, +∞]}

ℎ̂(𝑝k) =
⎧{
⎨{⎩

(𝜆ℓ1x. x) ↦ [];
(𝜆ℓ2x. k (x ∗ n)) ↦ [n ↦ 𝑝n; k ↦ 𝑝k];

⎫}
⎬}⎭

▶ Mimics the behaviour of a compiler: Values are allocated in the heap
▶ In practice: inhibits sharing of equivalent abstract values
▶ There is a finite number of abstract pointer names:

names are chosen based on a (finite) abstraction of the call stack
▶ The abstract heap is global:

This prevents refining information when some control-flow branch is taken 10/16

Forward and Backward Analyses

Consider the following program: if x < 42 then e1 else e2

▶ To analyse e1 with precision, we need to
exploit the fact that (x < 42) evaluated to true

▶ This is done by running a backward analysis on the expression (x < 42)

▶ Problem: the condition is an arbitrary expression: it could be an application
if f x then e1 else e2

 To obtain precise results, we need to know which closures f might evaluate to
For example, f could evaluate to (fun x -> x < 42)

Forward analysis et backward analyses depend on each other!

▶ A problem in all interprocedural analyses
▶ Solution: use a dynamic fixpoint solver

11/16

Forward and Backward Analyses

Consider the following program: if x < 42 then e1 else e2

▶ To analyse e1 with precision, we need to
exploit the fact that (x < 42) evaluated to true

▶ This is done by running a backward analysis on the expression (x < 42)
▶ Problem: the condition is an arbitrary expression: it could be an application

if f x then e1 else e2

 To obtain precise results, we need to know which closures f might evaluate to
For example, f could evaluate to (fun x -> x < 42)

Forward analysis et backward analyses depend on each other!

▶ A problem in all interprocedural analyses
▶ Solution: use a dynamic fixpoint solver

11/16

Forward and Backward Analyses

Consider the following program: if x < 42 then e1 else e2

▶ To analyse e1 with precision, we need to
exploit the fact that (x < 42) evaluated to true

▶ This is done by running a backward analysis on the expression (x < 42)
▶ Problem: the condition is an arbitrary expression: it could be an application

if f x then e1 else e2

 To obtain precise results, we need to know which closures f might evaluate to
For example, f could evaluate to (fun x -> x < 42)

Forward analysis et backward analyses depend on each other!

▶ A problem in all interprocedural analyses
▶ Solution: use a dynamic fixpoint solver

11/16

Defining Static Analysers Using Dynamic Fixpoint Solvers

val fix: ((X.t -> Y.t) -> (X.t -> Y.t)) -> (X.t -> Y.t)
Computes a post-fixpoint of the functional passed as argument

12/16

Defining Static Analysers Using Dynamic Fixpoint Solvers

val fix: ((X.t -> Y.t) -> (X.t -> Y.t)) -> (X.t -> Y.t)
Computes a post-fixpoint of the functional passed as argument

 Allows to define a big-step analyser using open recursion:

fix @@ fun analyse (t, env) -> match t with
| Var x -> Env.get env x
| Lam (x, t) -> D.make_closure x t (Env.restrict env (fv (Lam (x, t))))
| App(t1, t2) ->

let v2 = analyse (t2, env) in
if D.is_bot v2 then D.bot else
let v1 = analyse (t1, env) in
D.joins (D.closures v1)

(fun (x, t, env0) -> analyse (t, Env.add x v2 env0))

fix implements the iteration strategy of the analyser
and tracks dynamic dependencies to avoid unnecessary recomputations 12/16

Defining Static Analysers Using Dynamic Fixpoint Solvers

val fix: ((X.t -> Y.t) -> (X.t -> Y.t)) -> (X.t -> Y.t)
Computes a post-fixpoint of the functional passed as argument

▶ Idea pioneered by work on Prolog analysis
Pascal Van Hentenryck, Agostino Cortesi and Baudouin Le Charlier. “Type Ana-

lysis of Prolog Using Type Graphs”. In: The Journal of Logic Programming 22.3 (Mar.
1995), pp. 179–209. DOI: 10.1016/0743-1066(94)00021-w

▶ Later re-emphasized (in a simpler setting)
David Darais et al. “Abstracting definitional interpreters (functional pearl)”. In:

Proc. ACM Program. Lang. 1.ICFP (2017), 12:1–12:25. DOI: 10.1145/3110256

▶ Actually used in a static analyser for C programs
Vesal Vojdani et al. “Static race detection for device drivers: the Goblint ap-

proach”. In: Proceedings of the 31st IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2016. ACM, 2016, pp. 391–402. DOI: 10 . 1145 /
2970276.2970337 12/16

https://doi.org/10.1016/0743-1066(94)00021-w
https://doi.org/10.1145/3110256
https://doi.org/10.1145/2970276.2970337
https://doi.org/10.1145/2970276.2970337

Defining Static Analysers Using Dynamic Fixpoint Solvers

val fix: ((X.t -> Y.t) -> (X.t -> Y.t)) -> (X.t -> Y.t)
Computes a post-fixpoint of the functional passed as argument

▶ You’ve heard about fixpoint solvers and static analysers at ICFP this week!
Sven Keidel, Sebastian Erdweg and Tobias Hombücher. “Combinator-Based Fix-

point Algorithms for Big-Step Abstract Interpreters”. In: Proceedings of the ACM on
Programming Languages 7.ICFP (Aug. 2023), pp. 955–981. DOI: 10.1145/3607863

12/16

https://doi.org/10.1145/3607863

High-Level Structure of the Analyser (Frontend)

Source
code

Untyped
AST

OCaml
parser

Typed AST
(.cmt)

OCaml type
inference

Desugared
AST

Desugaring

Salto
AST

Pattern
Disambiguation

Abstract
values

Static Analysis

13/16

High-Level Structure of the Analyser (Frontend)

Source
code

Untyped
AST

OCaml
parser

Typed AST
(.cmt)

OCaml type
inference

Desugared
AST

Desugaring

Salto
AST

Pattern
Disambiguation

Abstract
values

Static Analysis

Typed AST:

 Names are resolved
 Type information can be retrieved for every node
 Some constructs are redundant:

▶ Pattern matching is performed at several places
match e with p1 -> ... | ... | pn -> ...
let p = e in ...
function p -> ...
try e with p1 -> ... | ... | pn -> ...

▶ Exception management is performed at several places
match e with x -> ... | exception exc -> ...
try e with exc -> ...

 Order of evaluation is implicit
13/16

High-Level Structure of the Analyser (Frontend)

Source
code

Untyped
AST

OCaml
parser

Typed AST
(.cmt)

OCaml type
inference

Desugared
AST

Desugaring

Salto
AST

Pattern
Disambiguation

Abstract
values

Static Analysis

Desugared AST:

▶ A single construct for pattern matching:
match e with
| p_1 -> ...
| ...
| p_n -> ...

▶ A single construct for exception handling:
dispatch e with
| val x -> ...
| exception exc -> ...

▶ Evaluation order made explicit using local lets,
when possible (close to a “monadic normal form”)

13/16

High-Level Structure of the Analyser (Frontend)

Source
code

Untyped
AST

OCaml
parser

Typed AST
(.cmt)

OCaml type
inference

Desugared
AST

Desugaring

Salto
AST

Pattern
Disambiguation

Abstract
values

Static Analysis

Salto AST:

▶ Disambiguate patterns: introduce complements
▶ match e with

| Some _, _ -> ...
| _, Some _ -> ...
| _, _ -> ...

match e with
| Some _, _ -> ...
| (_ \ Some _), Some _ -> ...
| (_ \ Some _), (_ \ Some _) -> ...

 This is valuable information for any static analyser
▶ Allows to analyse the branches of a match independently
▶ Important for extensible data-types (e.g., exceptions)

13/16

High-Level Structure of the Analyser (Frontend)

Source
code

Untyped
AST

OCaml
parser

Typed AST
(.cmt)

OCaml type
inference

Desugared
AST

Desugaring

Salto
AST

Pattern
Disambiguation

Abstract
values

Static Analysis

Salto AST:

▶ Disambiguate patterns: introduce complements
▶ match e with

| Some _, _ -> ...
| _, Some _ -> ...
| _, _ -> ...
match e with
| Some _, _ -> ...
| (_ \ Some _), Some _ -> ...
| (_ \ Some _), (_ \ Some _) -> ...

 This is valuable information for any static analyser
▶ Allows to analyse the branches of a match independently
▶ Important for extensible data-types (e.g., exceptions)

13/16

High-Level Structure of the Analyser (Frontend)

Source
code

Untyped
AST

OCaml
parser

Typed AST
(.cmt)

OCaml type
inference

Desugared
AST

Desugaring

Salto
AST

Pattern
Disambiguation

Abstract
values

Static Analysis

Salto AST:

▶ Disambiguate patterns: introduce complements
▶ match e with

| Some _, _ -> ...
| _, Some _ -> ...
| _, _ -> ...
match e with
| Some _, _ -> ...
| (_ \ Some _), Some _ -> ...
| (_ \ Some _), (_ \ Some _) -> ...

 This is valuable information for any static analyser
▶ Allows to analyse the branches of a match independently
▶ Important for extensible data-types (e.g., exceptions)

13/16

High-Level Structure of the Analyser (Frontend)

Source
code

Untyped
AST

OCaml
parser

Typed AST
(.cmt)

OCaml type
inference

Desugared
AST

Desugaring

Salto
AST

Pattern
Disambiguation

Abstract
values

Static Analysis

Static analysis:

▶ A whole program, value analysis
▶ Parameterised over abstract domains for:

▶ integers, strings, chars
▶ sets of algebraic/functional values

▶ Parameterised over the iteration strategy,
i.e., over a (post) fixpoint solver

▶ Parameterised over (some) context sensibility

▶ The order of analysis of modules
is driven by the dependencies
computed by the dune build system

13/16

High-Level Structure of the Analyser (Frontend)

Source
code

Untyped
AST

OCaml
parser

Typed AST
(.cmt)

OCaml type
inference

Desugared
AST

Desugaring

Salto
AST

Pattern
Disambiguation

Abstract
values

Static Analysis
Dependencies

(dune)

Static analysis:

▶ A whole program, value analysis
▶ Parameterised over abstract domains for:

▶ integers, strings, chars
▶ sets of algebraic/functional values

▶ Parameterised over the iteration strategy,
i.e., over a (post) fixpoint solver

▶ Parameterised over (some) context sensibility
▶ The order of analysis of modules

is driven by the dependencies
computed by the dune build system

13/16

State of the Implementation

Code component Code size

AST transformations ∼ 3000 LoC
Abstract domain for values ∼ 3500 LoC
Core of the abstract interpreter ∼ 4300 LoC
Fixpoint engine ∼ 500 LoC

267 test programs (≤ 200 LoC), featuring:

▶ Higher-order, direct style programs
▶ Church encodings
▶ CPS programs
▶ Defunctionalised programs
▶ Monadic programs
▶ Non-regular types, GADTs

Analysis times range from 200 ms to 2 mn

14/16

State of the Implementation

Code component Code size

AST transformations ∼ 3000 LoC
Abstract domain for values ∼ 3500 LoC
Core of the abstract interpreter ∼ 4300 LoC
Fixpoint engine ∼ 500 LoC

267 test programs (≤ 200 LoC), featuring:

▶ Higher-order, direct style programs
▶ Church encodings
▶ CPS programs
▶ Defunctionalised programs
▶ Monadic programs
▶ Non-regular types, GADTs

Analysis times range from 200 ms to 2 mn 14/16

Long Term Challenges

▶ Relational analysis (especially: input/output relations)
Benoıt̂ Montagu and Thomas P. Jensen. “Stable Relations and Abstract Inter-

pretation of Higher-order Programs”. In: Proc. ACM Program. Lang. 4.ICFP (2020),
119:1–119:30. DOI: 10.1145/3409001

▶ Expressive and efficient relational domains for sets of trees
are still an open problem

▶ Low-level representation of data (Obj module)
▶ Algebraic effects (one-shot continuations)
▶ Multicore
▶ Signals
▶ Scalability of the analysis

15/16

https://doi.org/10.1145/3409001

Conclusion

Salto: Static Analyses for Trustworthy OCaml

▶ A work in progress!
▶ An abstract interpreter for OCaml programs that detects uncaught exceptions
▶ Features an abstract domain for inductively defined sets of values
▶ Implemented using a dynamic fixpoint solver

raise Questions

https://salto.gitlabpages.inria.fr/

B. Montagu + P. Lermusiaux + T. Genet + T. Jensen

16/16

https://salto.gitlabpages.inria.fr/

The Road Ahead (1)

Support more features of OCaml:

▶ Support mutable state
 References and mutable data-types
 Arrays
 External state provided by the OS (e.g., file descriptors)

▶ Detect arithmetic overflows/underflows
▶ Detect problematic cases of pattern matching on mutable data
▶ Cyclic values, e.g.: let rec l = 1 :: l

▶ The lazy construct
▶ Objects, classes, recursive modules…

The Road Ahead (2)

Refine the analysis:

▶ Incorporate a narrowing phase to the fixpoint solver
▶ Exploit the types inferred by the OCaml compiler (reduced product)
▶ Specific abstract domains for strings, bytes, sets, maps, hash-tables…

Minimisation Examples

▶ Minimisation is important to reduce memory consumption
▶ And also helps avoid some unnecessary computations thanks to

memoisation
▶ Example: Peano numbers admit several equivalent representations

𝜇𝛼.{variants = {O ↦ ⋅; S ↦ 𝛼}}

≡ {variants = {O ↦ ⋅; S ↦ 𝜇𝛼.{variants = {O ↦ ⋅; S ↦ 𝛼}}}} (external unfolding)

≡ 𝜇𝛼.{variants = {O ↦ ⋅; S ↦ {variants = {O ↦ ⋅; S ↦ 𝛼}}}} (internal unfolding)

▶ Our minimisation algorithm canonises
these three abstract values into the first one

Minimisation Examples

▶ Minimisation is important to reduce memory consumption
▶ And also helps avoid some unnecessary computations thanks to

memoisation
▶ Example: Peano numbers admit several equivalent representations

𝜇𝛼.{variants = {O ↦ ⋅; S ↦ 𝛼}}

≡ {variants = {O ↦ ⋅; S ↦ 𝜇𝛼.{variants = {O ↦ ⋅; S ↦ 𝛼}}}} (external unfolding)

≡ 𝜇𝛼.{variants = {O ↦ ⋅; S ↦ {variants = {O ↦ ⋅; S ↦ 𝛼}}}} (internal unfolding)

▶ Our minimisation algorithm canonises
these three abstract values into the first one

Minimisation Examples

▶ Minimisation is important to reduce memory consumption
▶ And also helps avoid some unnecessary computations thanks to

memoisation
▶ Example: Peano numbers admit several equivalent representations

𝜇𝛼.{variants = {O ↦ ⋅; S ↦ 𝛼}}

≡ {variants = {O ↦ ⋅; S ↦ 𝜇𝛼.{variants = {O ↦ ⋅; S ↦ 𝛼}}}} (external unfolding)

≡ 𝜇𝛼.{variants = {O ↦ ⋅; S ↦ {variants = {O ↦ ⋅; S ↦ 𝛼}}}} (internal unfolding)

▶ Our minimisation algorithm canonises
these three abstract values into the first one

Minimisation Examples

▶ Minimisation is important to reduce memory consumption
▶ And also helps avoid some unnecessary computations thanks to

memoisation
▶ Example: Peano numbers admit several equivalent representations

𝜇𝛼.{variants = {O ↦ ⋅; S ↦ 𝛼}}

≡ {variants = {O ↦ ⋅; S ↦ 𝜇𝛼.{variants = {O ↦ ⋅; S ↦ 𝛼}}}} (external unfolding)

≡ 𝜇𝛼.{variants = {O ↦ ⋅; S ↦ {variants = {O ↦ ⋅; S ↦ 𝛼}}}} (internal unfolding)

▶ Our minimisation algorithm canonises
these three abstract values into the first one

From a Research Prototype To an Actual Tool

▶ Improve error reporting and UI (LSP server?)
▶ Incremental changes of code
▶ “Explainable Abstract Interpretation”
▶ Produce examples of “bad” inputs
▶ Requires a lot of testing, engineering, time, and love!

Related Static Analyses: Related Work

▶ Type-based analysis of exceptions
Xavier Leroy and François Pessaux. “Type-Based Analysis of Uncaught Excep-

tions”. In: ACM Trans. Program. Lang. Syst. 22.2 (2000), pp. 340–377. DOI: 10.1145/
349214.349230

▶ Control-flow analysis
Olin Shivers. “The Semantics of Scheme Control-Flow Analysis”. In: Proceedings

of the 1991 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based
Program Manipulation. PEPM ’91. New York, NY, USA: Association for Computing
Machinery, 1991, pp. 190–198. ISBN: 0897914333. DOI: 10.1145/115865.115884

▶ Control-flow analysis using widening
Benoıt̂ Montagu and Thomas P. Jensen. “Trace-Based Control-Flow Analysis”. In:

PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, Virtual Event, Canada, June 20-25, 2021. Ed. by Stephen
N. Freund and Eran Yahav. ACM, 2021, pp. 482–496. DOI: 10.1145/3453483.3454057

https://doi.org/10.1145/349214.349230
https://doi.org/10.1145/349214.349230
https://doi.org/10.1145/115865.115884
https://doi.org/10.1145/3453483.3454057

Related Static Analyses: Related Work

▶ Analysis of Prolog with type graphs
Pascal Van Hentenryck, Agostino Cortesi and Baudouin Le Charlier. “Type Ana-

lysis of Prolog Using Type Graphs”. In: The Journal of Logic Programming 22.3 (Mar.
1995), pp. 179–209. DOI: 10.1016/0743-1066(94)00021-w

▶ Analysis of logic programs with tree grammars
Patrick Cousot and Radhia Cousot. “Formal Language, Grammar and Set-

constraint-based Program Analysis by Abstract Interpretation”. In: Proceedings of
the seventh international conference on Functional programming languages and
computer architecture - FPCA ’95. ACM Press, 1995. DOI: 10.1145/224164.224199

▶ Graph-based representations for sets of trees
Laurent Mauborgne. “Representation of Sets of Trees for Abstract Interpreta-

tion”. PhD thesis. École Polytechnique, Nov. 1999. URL: https://www.di.ens.fr/
~mauborgn/publi/t.pdf

https://doi.org/10.1016/0743-1066(94)00021-w
https://doi.org/10.1145/224164.224199
https://www.di.ens.fr/~mauborgn/publi/t.pdf
https://www.di.ens.fr/~mauborgn/publi/t.pdf

Related Static Analyses: Related Work

▶ A relational abstract domain for trees with numeric data
Matthieu Journault, Antoine Miné and Abdelraouf Ouadjaout. “An Abstract Do-

main for Trees with Numeric Relations”. In: Programming Languages and Sys-
tems - 28th European Symposium on Programming, ESOP 2019, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague,
Czech Republic, April 6-11, 2019, Proceedings. Ed. by Luı́s Caires. Vol. 11423. Lecture
Notes in Computer Science. Springer, 2019, pp. 724–751. DOI: 10.1007/978-3-030-
17184-1_26

▶ Equality constrainted tree automata (ECTAs)
James Koppel et al. “Searching entangled program spaces”. In: Proceedings of

the ACM on Programming Languages 6.ICFP (Aug. 2022), pp. 23–51. DOI: 10.1145/
3547622

https://doi.org/10.1007/978-3-030-17184-1_26
https://doi.org/10.1007/978-3-030-17184-1_26
https://doi.org/10.1145/3547622
https://doi.org/10.1145/3547622

Fixpoint Solvers: Related Work

Some uses of fixpoint solver for static analyses:

▶ Analysis of Prolog Programs
Baudouin L. Charlier and Pascal Van Hentenryck. A Universal Top-Down Fixpoint

Algorithm. Tech. rep. USA, 1992. URL: ftp://ftp.cs.brown.edu/pub/techreports/
92/cs92-25.pdf

▶ Approach followed by Interproc
Bertrand Jeannet. “Some Experience on the Software Engineering of Abstract

Interpretation Tools”. In: Electronic Notes in Theoretical Computer Science 267.2
(Oct. 2010), pp. 29–42. DOI: 10.1016/j.entcs.2010.09.016

▶ Approach followed by the Goblint static analyser
https://goblint.in.tum.de/home

ftp://ftp.cs.brown.edu/pub/techreports/92/cs92-25.pdf
ftp://ftp.cs.brown.edu/pub/techreports/92/cs92-25.pdf
https://doi.org/10.1016/j.entcs.2010.09.016
https://goblint.in.tum.de/home

	Appendix

