The Design and Implementation of
An Abstract Interpreter for OCaml Programs

A Preliminary Report on the Salto Analyser

Benoit Montagu, Inria

-

lrezia—

ML workshop, Seattle — 2023, September 8t

1/16

https://people.irisa.fr/Benoit.Montagu/

The Salto Project

» What: static analysis for OCaml programs
@ https://salto.gitlabpages.inria.fr/

» Where: Inria Rennes

P. Lermusiaux T. Genet T. Jensen B. Montagu
» Funding: &eeia— + %’3 Nomadic Labs

2/16

https://salto.gitlabpages.inria.fr/
https://team.inria.fr/epicure/
https://fr.linkedin.com/in/pierre-lermusiaux-4220ba89
https://people.irisa.fr/Thomas.Genet/
https://people.rennes.inria.fr/Thomas.Jensen/
https://people.irisa.fr/Benoit.Montagu/

4 '

| SEE UNCAUGHT EXCEPTIONS™
imgfiip.com o T WA L

Static Analysis of OCaml programs: What For?

Short-term goals:

P Detect uncaught exceptions
» User-provided assertions
P Missing exception handlers (e.g,, Division_by_zero)
P Out of bounds accesses for arrays, strings, ...
» Polymorphic comparison on functions

P Detect illegal uses of unsafe functions (e.g, String.unsafe_get)

3/16

Static Analysis of OCaml programs: What For?

Short-term goals:

P Detect uncaught exceptions
» User-provided assertions
P Missing exception handlers (e.g,, Division_by_zero)
P Out of bounds accesses for arrays, strings, ...
» Polymorphic comparison on functions

P Detect illegal uses of unsafe functions (e.g, String.unsafe_get)
Longer-term goals:

» Support most of the OCaml language
» Detect unhandled algebraic effects
» Detect some undefined behaviours (e.g., sensitivity to evaluation order)

3/16

Static Analysis of OCaml programs: What For?

Short-term goals:

P Detect uncaught exceptions
» User-provided assertions
P Missing exception handlers (e.g,, Division_by_zero)
P Out of bounds accesses for arrays, strings, ...
» Polymorphic comparison on functions

P Detect illegal uses of unsafe functions (e.g, String.unsafe_get)
Longer-term goals:

» Support most of the OCaml language
» Detect unhandled algebraic effects
» Detect some undefined behaviours (e.g., sensitivity to evaluation order)

Out of scope (for now):

» Concurrency, parallelism
» Support for the Obj module 3/16

Static Analysis of OCaml programs: What For?

Short-term goals:

P Detect uncaught exceptions
» User-provided assertions
P Missing exception handlers (e.g,, Division_by_zero)
P Out of bounds accesses for arrays, strings, ...
P Polymorphic comparison on functions

» Detect illegal uses of unsafe functions (e.g, String.unsafe_get)

This talk]

Longer-term goals:

» Support most of the OCaml language
» Detect unhandled algebraic effects

» Detect some undefined behaviours (e.g., sensitivity to evaluation order)

Out of scope (for now):

» Concurrency, parallelism
» Support for the Obj module

3/16

Static Analyses for Uncaught Exceptions

Two families of static analyses:

» Type and effect systems:
© Modular, good performance
@ Limited precision for user-provided assertions
[§ Xavier Leroy and Francois Pessaux. “Type-Based Analysis of Uncaught Excep-
tions”. In: ACM Trans. Program. Lang. Syst. 22.2 (2000), pp. 340-377. DOI: 10.1145/
349214 .349230

4116

https://doi.org/10.1145/349214.349230
https://doi.org/10.1145/349214.349230
https://doi.org/10.1007/3-540-58485-4_44

Static Analyses for Uncaught Exceptions

Two families of static analyses:

» Type and effect systems:
© Modular, good performance
@ Limited precision for user-provided assertions
[§ Xavier Leroy and Francois Pessaux. “Type-Based Analysis of Uncaught Excep-
tions”. In: ACM Trans. Program. Lang. Syst. 22.2 (2000), pp. 340-377. DOI: 10.1145/
349214 .349230
» Extensions of control-flow analyses (CFA):
@ Not modular, more costly
© Decent precision for user-provided assertions
[§ Kwangkeun Yi. “Compile-time Detection of Uncaught Exceptions in Standard
ML Programs”. In: Static Analysis, First International Static Analysis Symposium,
SAS’94, Namur, Belgium, September 28-30, 1994, Proceedings. Ed. by Baudouin Le
Charlier. Vol. 864. Lecture Notes in Computer Science. Springer, 1994, pp. 238-254.

DOI: 10.1007/3-540-58485-4_44 L/16
1

https://doi.org/10.1145/349214.349230
https://doi.org/10.1145/349214.349230
https://doi.org/10.1007/3-540-58485-4_44

A Whole-Program Value Analysis for OCaml programs

» Principle:
For every reachable sub-expression e of a program, compute:
P A superset of the values that e may evaluate to, and
P Asuperset of the exceptions e might raise
P An approximation of the call stack where the exception was raised
Expressions that are known to be unreachable are not analysed

> Only the functions that are called are analysed

5/16

https://doi.org/10.1145/3453483.3454057

A Whole-Program Value Analysis for OCaml programs

» Principle:
For every reachable sub-expression e of a program, compute:
P A superset of the values that e may evaluate to, and
P Asuperset of the exceptions e might raise
P An approximation of the call stack where the exception was raised

Expressions that are known to be unreachable are not analysed
7 Only the functions that are called are analysed
» Technique: based on the abstract interpretation of A-calculus developed in

[3 Benoit Montagu and Thomas P. Jensen. “Trace-Based Control-Flow Analysis”. In:
PLDI "21: 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, Virtual Event, Canada, June 20-25, 2021. Ed. by Stephen
N. Freund and Eran Yahav. ACM, 2021, pp. 482-496. DOI: 10.1145/3453483.3454057

We analyse programs as if they were untyped

5/16

https://doi.org/10.1145/3453483.3454057

A Whole-Program Value Analysis for OCaml programs

» Principle:
For every reachable sub-expression e of a program, compute:
P A superset of the values that e may evaluate to, and
P Asuperset of the exceptions e might raise
P An approximation of the call stack where the exception was raised

Expressions that are known to be unreachable are not analysed
7 Only the functions that are called are analysed
» Technique: based on the abstract interpretation of A-calculus developed in

[3 Benoit Montagu and Thomas P. Jensen. “Trace-Based Control-Flow Analysis”. In:
PLDI "21: 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, Virtual Event, Canada, June 20-25, 2021. Ed. by Stephen
N. Freund and Eran Yahav. ACM, 2021, pp. 482-496. DOI: 10.1145/3453483.3454057

We analyse programs as if they were untyped
P Novelty: an abstract domain to represent recursively defined sets of values

5/16

https://doi.org/10.1145/3453483.3454057

A Whole-Program Value Analysis for OCaml programs

» Principle:
For every reachable sub-expression e of a program, compute:
P A superset of the values that e may evaluate to, and
P Asuperset of the exceptions e might raise
P An approximation of the call stack where the exception was raised

Expressions that are known to be unreachable are not analysed
7 Only the functions that are called are analysed
» Technique: based on the abstract interpretation of A-calculus developed in

[3 Benoit Montagu and Thomas P. Jensen. “Trace-Based Control-Flow Analysis”. In:
PLDI "21: 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, Virtual Event, Canada, June 20-25, 2021. Ed. by Stephen
N. Freund and Eran Yahav. ACM, 2021, pp. 482-496. DOI: 10.1145/3453483.3454057

We analyse programs as if they were untyped
P Novelty: an abstract domain to represent recursively defined sets of values
» Implementation: uses a dynamic fixpoint solver 5/16

https://doi.org/10.1145/3453483.3454057

What We Have Achieved So Far

P An abstract interpreter (big-step style) that supports:
© Higher-order programs
© Mutually-recursive functions
© Algebraic values, deep pattern matching
© Integers, strings, characters...
© Exceptions
© Modules and functors (first class, non-recursive)
@ No mutable state yet
@ No laziness
@ No objects/classes
@ No OCaml 5 features

P The analyser is parameterised over the abstract domain for values

6/16

What We Have Achieved So Far

P An abstract interpreter (big-step style) that supports:
© Higher-order programs
© Mutually-recursive functions
© Algebraic values, deep pattern matching
© Integers, strings, characters...
© Exceptions
© Modules and functors (first class, non-recursive)
@ No mutable state yet
@ No laziness
@ No objects/classes
No OCaml 5 features
P The analyser is parameterised over the abstract domain for values
» A forward analysis: it is not guided by user-written formulas
P The analysis is context- and flow-sensitive
» A non-relational analysis: no relations between values/variables are inferred

6/16

What We Have Achieved So Far

P An abstract interpreter (big-step style) that supports:
© Higher-order programs
© Mutually-recursive functions
© Algebraic values, deep pattern matching
Integers, strings, characters...
Exceptions
Modules and functors (first class, non-recursive)
No mutable state yet
No laziness
No objects/classes
No OCaml 5 features

P The analyser is parameterised over the abstract domain for values

» A forward analysis: it is not guided by user-written formulas

P The analysis is context- and flow-sensitive

» A non-relational analysis: no relations between values/variables are inferred
» Demo! list_filter map_merge

©
L+
L+
e
e
e

6/16

An Abstract Domain For Sets Of Values (simplified)

A finite representation for recursively defined sets of untyped values:
vf e V# = (ints=de Z¥%
variants = {¢; = v%;...;¢, — v*};
pairs = (v#,v#);
funs = {(A%.t) = [X; = 0¥;...;%, = 0¥];.))
| T

7/16

An Abstract Domain For Sets Of Values (simplified)

A finite representation for recursively defined sets of untyped values:
vf e V# = (ints=de Z¥%
variants = {¢; = v%;...;¢, — v*};
pairs = (v#,v#);
funs = {(A%.t) = [X; = 0¥;...;%, = 0¥];.))
| T
| a | paof
» 1 has the semantics of a least fixed point
© The widening operator detects some regularity and introduces the us

7/16

An Abstract Domain For Sets Of Values (simplified)

A finite representation for recursively defined sets of untyped values:
vf e V# = (ints=de Z¥%
variants = {¢; = v%;...;¢, — v*};
pairs = (v#,v#);
funs = {(A%.t) = [X; = 0¥;...;%, = 0¥];.))
| T
| a | paof
» 1 has the semantics of a least fixed point
© The widening operator detects some regularity and introduces the us
» Example: Peano numbers

pefvariants = {0 — ;S — a}}

7/16

An Abstract Domain For Sets Of Values (simplified)

A finite representation for recursively defined sets of untyped values:
vf e V# = (ints=de Z¥%
variants = {¢; = v%;...;¢, — v*};
pairs = (v#,v#);
funs = {(A%.t) = [X; = 0¥;...;%, = 0¥];.))
| T
| a | paof
» 1 has the semantics of a least fixed point
© The widening operator detects some regularity and introduces the us
» Example: Peano numbers

pefvariants = {0 — ;S — a}}

» Example: A set of continuations (for CPSed factorial)

w.{funs = A1xx) = [1;
pe Alx. k (x*n)) = [n - {ints = [1, +oo]}; k » a]; 7116

Abstract Domain: Important Remarks

The design of the abstract domain draws inspiration from:

» Equi-recursive types + union types

» Type Graphs (analysis of Prolog programs)
[§ Pascal Van Hentenryck, Agostino Cortesi and Baudouin Le Charlier. “Type Ana-
lysis of Prolog Using Type Graphs”. In: The Journal of Logic Programming 22.3 (Mar.
1995), pp. 179-209. DOI: 10.1016/0743-1066 (94)00021-w

» Tree grammars / Tree automata

8/16

https://doi.org/10.1016/0743-1066(94)00021-w

Abstract Domain: Important Remarks

The design of the abstract domain draws inspiration from:

» Equi-recursive types + union types

» Type Graphs (analysis of Prolog programs)
[§ Pascal Van Hentenryck, Agostino Cortesi and Baudouin Le Charlier. “Type Ana-
lysis of Prolog Using Type Graphs”. In: The Journal of Logic Programming 22.3 (Mar.
1995), pp. 179-209. DOI: 10.1016/0743-1066 (94)00021-w

» Tree grammars / Tree automata

These abstract values admit two representations:
» As graphs
7 Efficient algorithms for union, intersection, inclusion, emptiness test,
widening, minimisation, ...
» Asterms, with bound variables
> Permits hash-consing/memoisation
> This is crucial to obtain decent performance (~10x improvement!) 8/16

https://doi.org/10.1016/0743-1066(94)00021-w

Related Work (1/2)

Pessaux & Leroy’s effect type system:

P They infer recursive types, using unification

» They support arrow types, row variables for effects: enables modular analysis
» They do not infer abstract closures:
Incurs a loss of information when using functions as first-class values

» Limited support for sets of integers: Int[1:Pre; 3:Pre] Int[T] Int[p]
We support any abstract domain for integers (non-relational so far)

9/16

Related Work (2/2)

Control-Flow Analyses:

» They always avoid recursion in the abstract domain
» Recursion is obtained by means of indirections through an abstract heap

4 e
funs — (A1x.%) = [];
(A2x. k ; pel;
where: h(p,) = 4ifts = [1, +o0]}
R Aix.x) - [1; }
) =
(P Al2x. k (x*n)) = [N = po; k= p;

» Mimics the behaviour of a compiler: Values are allocated in the heap

10/16

Related Work (2/2)

Control-Flow Analyses:

» They always avoid recursion in the abstract domain
» Recursion is obtained by means of indirections through an abstract heap

4 e
funs — (A1x.%) = [];
(A2x. k ; pel;
where: h(p,) = 4ifts = [1, +o0]}
R Aix.x) - [1; }
) =
(P Al2x. k (x*n)) = [N = po; k= p;

» Mimics the behaviour of a compiler: Values are allocated in the heap
» In practice: inhibits sharing of equivalent abstract values
» There is a finite number of abstract pointer names:
names are chosen based on a (finite) abstraction of the call stack
P The abstract heap is global:

This prevents refining information when some control-flow branch is taken R

Forward and Backward Analyses

Consider the following program: if x < 42 then el else e2

P To analyse el with precision, we need to
exploit the fact that (x < 42) evaluated to true

P This is done by running a backward analysis on the expression (x < 42)

1/16

Forward and Backward Analyses

Consider the following program: if x < 42 then el else e2

P To analyse el with precision, we need to
exploit the fact that (x < 42) evaluated to true

v

This is done by running a backward analysis on the expression (x < 42)

» Problem: the condition is an arbitrary expression: it could be an application
if f x then el else e2

> To obtain precise results, we need to know which closures £ might evaluate to
For example, £ could evaluate to (fun x -> x < 42)

1/16

Forward and Backward Analyses

Consider the following program: if x < 42 then el else e2
P To analyse el with precision, we need to
exploit the fact that (x < 42) evaluated to true
P This is done by running a backward analysis on the expression (x < 42)

» Problem: the condition is an arbitrary expression: it could be an application
if f x then el else e2

> To obtain precise results, we need to know which closures £ might evaluate to
For example, £ could evaluate to (fun x -> x < 42)

Forward analysis et backward analyses depend on each other!
» A problem in all interprocedural analyses

P Solution: use a dynamic fixpoint solver

1/16

Defining Static Analysers Using Dynamic Fixpoint Solvers

val fix: ((X.t -> Y.t) > (X.t > Y.t)) > (X.t > Y.t)
Computes a post-fixpoint of the functional passed as argument

12/16

Defining Static Analysers Using Dynamic Fixpoint Solvers

val fix: ((X.t -> Y.t) > (X.t > Y.t)) > (X.t > Y.t)
Computes a post-fixpoint of the functional passed as argument

7 Allows to define a big-step analyser using open recursion:

fix @@ fun analyse (t, env) -> match t with
| Var x -> Env.get env x
| Lam (x, t) -> D.make_closure x t (Env.restrict env (fv (Lam (x, t))))
| App(tl, t2) ->
let v2 = analyse (t2, env) in
if D.is_bot v2 then D.bot else
let vl = analyse (tl1, env) in
D.joins (D.closures v1)

(fun (x, t, env0) -> analyse (t, Env.add x v2 env0))

fix implements the iteration strategy of the analyser
and tracks dynamic dependencies to avoid unnecessary recomputations 12/16

Defining Static Analysers Using Dynamic Fixpoint Solvers

val fix: ((X.t -> Y.t) > (X.t > Y.t)) > (X.t > Y.t)
Computes a post-fixpoint of the functional passed as argument

P Idea pioneered by work on Prolog analysis

[§ Pascal Van Hentenryck, Agostino Cortesi and Baudouin Le Charlier. “Type Ana-
lysis of Prolog Using Type Graphs”. In: The Journal of Logic Programming 22.3 (Mar.
1995), pp. 179-209. DOI: 10.1016/0743-1066 (94)00021-w

» Later re-emphasized (in a simpler setting)
[3 David Darais et al. “Abstracting definitional interpreters (functional pearl)”. In:
Proc. ACM Program. Lang. 1.ICFP (2017), 12:1-12:25. DOI: 10.1145/3110256

P Actually used in a static analyser for C programs

[3 Vesal Vojdani et al. “Static race detection for device drivers: the Goblint ap-
proach”. In: Proceedings of the 31st IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2016. ACM, 2016, pp. 391-402. DOI: 10. 1145/
2970276 .2970337 ek

https://doi.org/10.1016/0743-1066(94)00021-w
https://doi.org/10.1145/3110256
https://doi.org/10.1145/2970276.2970337
https://doi.org/10.1145/2970276.2970337

Defining Static Analysers Using Dynamic Fixpoint Solvers

val fix: ((X.t -> Y.t) > (X.t > Y.t)) > (X.t > Y.t)
Computes a post-fixpoint of the functional passed as argument

» You've heard about fixpoint solvers and static analysers at ICFP this week!

[3 Sven Keidel, Sebastian Erdweg and Tobias Hombiicher. “Combinator-Based Fix-
point Algorithms for Big-Step Abstract Interpreters”. In: Proceedings of the ACM on
Programming Languages 7.ICFP (Aug. 2023), pp. 955-981. DOI: 10.1145/3607863

12/16

https://doi.org/10.1145/3607863

High-Level Structure of the Analyser (Frontend)

Typed AST
(.cmt)

Desugaring

Desugared
AS
Pattern

Disambiguation

il

V]
<

Salto
AST

Static Analysis

N

Abstract
values 13/16

i

High-Level Structure of the Analyser (Frontend)

Typed AST
(.cmt)
UTpEE B Desugaring
© Names are resolved 4
© Type information can be retrieved for every node Desugared
@ Some constructs are redundant: ‘ AST \
P Pattern matching is performed at several places Pattern
match e with p1 -> ... | ... | pn => ... Disambiguation
let p = e in ... - 2
function p -> ... Salto
try e with p1 -=> ... | ... | pn —> ... AST
P Exception management is performed at several places
match e with x -> ... | exception exc -> ... Static Analysis
try e with exc -> ... -2

Abstract

@ Order of evaluation is implicit
values 13/16

High-Level Structure of the Analyser (Frontend)

Typed AST
(.cmt)

Desugared AST: Desugaring

P A single construct for pattern matching:
Desugared
A

match e with

wm <
U

| p_1 > ...
Pattern

| p.n —> ... Disambiguation
» A single construct for exception handling: Savto

dispatch e with AST

| val x —> ...

| exception exc -> ... Static Analysis
» Evaluation order made explicit using local lets, 2

when possible (close to a “monadic normal form”) ‘ Abstract \

values 13/16

High-Level Structure of the Analyser (Frontend)

Typed AST
(.cmt)
Salto AST: -
» Disambiguate patterns: introduce complements 4
P match e with @g@
| Some _, _ > ... AST
| _, Some _ -> ... Pattern
|, _ > ... Disambiguation
Salto
AST

Static Analysis

N

Abstract
values 13/16

i

High-Level Structure of the Analyser (Frontend)

Typed AST
(.cmt)
Salto AST: Desugaring
» Disambiguate patterns: introduce complements 4
P match e with @ga@
| Some ., -> ... AST
| _, Some _ -> ... Pattern
|, > ... Disambiguation
match e with Savto
| Some o . =2 coc AST
| (_ \ Some), Some _ -> ...
| (_ \ Some _), (_ \ Some _) -> ... Static Analysis

Abstract
values 13/16

i

High-Level Structure of the Analyser (Frontend)

Typed AST
(.cmt)
Salto AST: Desugaring
» Disambiguate patterns: introduce complements 4
P match e with @ga@
| Some ., -> ... AST
| _, Some _ -> ... Pattern
|, > ... Disambiguation
match e with Savto
| Some o . =2 coc AST
| (_ \ Some), Some _ -> ...
| (_ \ Some _), (_ \ Some _) -> ... Static Analysis
O This is valuable information for any static analyser 2
» Allows to analyse the branches of a match independently ‘ Abstract \
» Important for extensible data-types (e.g., exceptions) values e

High-Level Structure of the Analyser (Frontend)

Typed AST
(.cmt)
Static analysis: Desugaring
» A whole program, value analysis +
» Parameterised over abstract domains for: Desugared
» integers, strings, chars EST]
P sets of algebraic/functional values Pattern
» Parameterised over the iteration strategy, Disambiguation
i.e., over a (post) fixpoint solver Savto
B Parameterised over (some) context sensibility AST

Static Analysis

N

Abstract
values 13/16

d

High-Level Structure of the Analyser (Frontend)

Typed AST
(.cmt)
Static analysis: Desugaring
» A whole program, value analysis 2
» Parameterised over abstract domains for: Desugared
P integers, strings, chars ESTj
P sets of algebraic/functional values Pattern
» Parameterised over the iteration strategy, Disambiguation
i.e., over a (post) fixpoint solver SaTto
P Parameterised over (some) context sensibilijt_y ___________________) ASTj
» The order of analysis of modules : Dependencies :
is driven by the dependencies (dune) """ Static Analysis

computed by the dune build system 2
Abstract
values 13/16

State of the Implementation

Code component Code size
AST transformations ~ 3000 LoC
Abstract domain for values ~ 3500 LoC
Core of the abstract interpreter ~ 4300 LoC
Fixpoint engine ~ 500 LoC

14/16

State of the Implementation

Code component Code size
AST transformations ~ 3000 LoC
Abstract domain for values ~ 3500 LoC
Core of the abstract interpreter ~ 4300 LoC
Fixpoint engine ~ 500 LoC

267 test programs (< 200 LoC), featuring:

» Higher-order, direct style programs
» Church encodings

» CPS programs

» Defunctionalised programs

» Monadic programs

» Non-regular types, GADTs

Analysis times range from 200 ms to 2 mn 14/16

Long Term Challenges

P Relational analysis (especially: input/output relations)

[3 Benoit Montagu and Thomas P. Jensen. “Stable Relations and Abstract Inter-
pretation of Higher-order Programs”. In: Proc. ACM Program. Lang. 4.ICFP (2020),
119:1-119:30. DOI: 10.1145/3409001

P Expressive and efficient relational domains for sets of trees
are still an open problem

» Low-level representation of data (0bj module)

» Algebraic effects (one-shot continuations)

» Multicore

» Signals

P Scalability of the analysis

15/16

https://doi.org/10.1145/3409001

Conclusion

Salto: Static Analyses for Trustworthy OCaml [40Caml

» A work in progress!

P An abstract interpreter for OCaml programs that detects uncaught exceptions
P Features an abstract domain for inductively defined sets of values

» Implemented using a dynamic fixpoint solver

ise Questio

@ https://salto.gitlabpages.inria.fr/

B. Montagu + P. Lermusiaux + T. Genet + T. Jensen

16/16

https://salto.gitlabpages.inria.fr/

The Road Ahead (1)

Support more features of OCaml:

» Support mutable state

> References and mutable data-types
> Arrays
> External state provided by the OS (e.g, file descriptors)

P Detect arithmetic overflows/underflows

P Detect problematic cases of pattern matching on mutable data
P Cyclic values, e.g.: et rec 1 =1 :: 1

» The lazy construct

P Objects, classes, recursive modules...

The Road Ahead (2)

Refine the analysis:

P Incorporate a narrowing phase to the fixpoint solver
P Exploit the types inferred by the OCaml compiler (reduced product)

P Specific abstract domains for strings, bytes, sets, maps, hash-tables...

Minimisation Examples

» Minimisation is important to reduce memory consumption

P And also helps avoid some unnecessary computations thanks to
memoisation

» Example: Peano numbers admit several equivalent representations

pac{variants = {0 —» ;S — a}}

Minimisation Examples

» Minimisation is important to reduce memory consumption

P And also helps avoid some unnecessary computations thanks to
memoisation

» Example: Peano numbers admit several equivalent representations

pac{variants = {0 —» ;S — a}}

= {variants = {0 » ;S — pa.{variants = {O —» ;S — a}}}}

Minimisation Examples

» Minimisation is important to reduce memory consumption

P And also helps avoid some unnecessary computations thanks to
memoisation

» Example: Peano numbers admit several equivalent representations

pac{variants = {0 —» ;S — a}}

{variants = {O — -;S — ua.{variants = {O — ;S - a}}}}

pa{variants = {O — ;S — {variants = {O » -;S — a}}}}

Minimisation Examples

» Minimisation is important to reduce memory consumption

P And also helps avoid some unnecessary computations thanks to
memoisation

» Example: Peano numbers admit several equivalent representations

pac{variants = {0 —» ;S — a}}

{variants = {O — -;S — ua.{variants = {O — ;S - a}}}}

pa{variants = {O — ;S — {variants = {O » -;S — a}}}}

» Our minimisation algorithm canonises
these three abstract values into the first one

From a Research Prototype To an Actual Tool

» Improve error reporting and Ul (LSP server?)
» Incremental changes of code

» “Explainable Abstract Interpretation”

» Produce examples of “bad” inputs

P Requires a lot of testing, engineering, time, and love!

Related Static Analyses: Related Work

» Type-based analysis of exceptions
[3 Xavier Leroy and Francois Pessaux. “Type-Based Analysis of Uncaught Excep-
tions”. In: ACM Trans. Program. Lang. Syst. 22.2 (2000), pp. 340-377. DOI: 10.1145/
349214 .349230

» Control-flow analysis
[§ Olin Shivers. “The Semantics of Scheme Control-Flow Analysis”. In: Proceedings
of the 1991 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based

Program Manipulation. PEPM '91. New York, NY, USA: Association for Computing
Machinery, 1991, pp. 190-198. ISBN: 0897914333. DOI: 10.1145/115865.115884

» Control-flow analysis using widening

[3 Benoit Montagu and Thomas P. Jensen. “Trace-Based Control-Flow Analysis”. In:
PLDI '21: 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, Virtual Event, Canada, June 20-25, 2021. Ed. by Stephen
N. Freund and Eran Yahav. ACM, 2021, pp. 482-496. DOI: 10.1145/3453483.3454057

https://doi.org/10.1145/349214.349230
https://doi.org/10.1145/349214.349230
https://doi.org/10.1145/115865.115884
https://doi.org/10.1145/3453483.3454057

Related Static Analyses: Related Work

» Analysis of Prolog with type graphs
[§ Pascal Van Hentenryck, Agostino Cortesi and Baudouin Le Charlier. “Type Ana-
lysis of Prolog Using Type Graphs”. In: The Journal of Logic Programming 22.3 (Mar.
1995), pp. 179-209. DOI: 10.1016/0743-1066(94)00021-w

» Analysis of logic programs with tree grammars
[§ Patrick Cousot and Radhia Cousot. “Formal Language, Grammar and Set-
constraint-based Program Analysis by Abstract Interpretation”. In: Proceedings of
the seventh international conference on Functional programming languages and
computer architecture - FPCA '95. ACM Press, 1995. DOI: 10.1145/224164.224199

» Graph-based representations for sets of trees

[3 Laurent Mauborgne. “Representation of Sets of Trees for Abstract Interpreta-
tion”. PhD thesis. Ecole Polytechnique, Nov. 1999. URL: https://www.di.ens.fr/
~mauborgn/publi/t.pdf

https://doi.org/10.1016/0743-1066(94)00021-w
https://doi.org/10.1145/224164.224199
https://www.di.ens.fr/~mauborgn/publi/t.pdf
https://www.di.ens.fr/~mauborgn/publi/t.pdf

Related Static Analyses: Related Work

» A relational abstract domain for trees with numeric data

[@ Matthieu Journault, Antoine Miné and Abdelraouf Ouadjaout. “An Abstract Do-
main for Trees with Numeric Relations”. In: Programming Languages and Sys-
tems - 28th European Symposium on Programming, ESOP 2019, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague,
Czech Republic, April 6-11, 2019, Proceedings. Ed. by Luis Caires. Vol. 11423. Lecture
Notes in Computer Science. Springer, 2019, pp. 724-751. DOI: 10.1007/978-3-030-
17184-1_26

» Equality constrainted tree automata (ECTAS)

[§ James Koppel et al. “Searching entangled program spaces”. In: Proceedings of
the ACM on Programming Languages 6.1CFP (Aug. 2022), pp. 23-51. DOI: 10.1145/
3547622

https://doi.org/10.1007/978-3-030-17184-1_26
https://doi.org/10.1007/978-3-030-17184-1_26
https://doi.org/10.1145/3547622
https://doi.org/10.1145/3547622

Fixpoint Solvers: Related Work

Some uses of fixpoint solver for static analyses:

» Analysis of Prolog Programs

[3 Baudouin L. Charlier and Pascal Van Hentenryck. A Universal Top-Down Fixpoint
Algorithm. Tech. rep. USA, 1992. URL: ftp://ftp.cs.brown.edu/pub/techreports/
92/cs92-25.pdf

» Approach followed by Interproc

[§ Bertrand Jeannet. “Some Experience on the Software Engineering of Abstract
Interpretation Tools”. In: Electronic Notes in Theoretical Computer Science 267.2
(Oct. 2010), pp. 29-42. DOI: 10.1016/j.entcs.2010.09.016

» Approach followed by the Goblint static analyser
@ https://goblint.in.tum.de/home

ftp://ftp.cs.brown.edu/pub/techreports/92/cs92-25.pdf
ftp://ftp.cs.brown.edu/pub/techreports/92/cs92-25.pdf
https://doi.org/10.1016/j.entcs.2010.09.016
https://goblint.in.tum.de/home

	Appendix

